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Formulas for the coordinates of points of a cubically anisotropic thermoelectric medium, which determine the
geometry of wave fronts excited by a lumped disturbance source, have been obtained. The three-dimensional
fronts of a quasilongitudinal modified elastic wave, a modified thermal wave, and quasitransverse elastic
waves propagating in lead have been constructed.

Introduction. The regularities of propagation of plane waves and discontinuity surfaces in isotropic and an-
isotropic media whose thermal properties are described by a generalized (hyperbolic) heat-conduction law have been
the focus of quite numerous works [1–3]. In particular, two-dimensional wave motions in a cubically anisotropic me-
dium and a transversally isotropic one have qualitatively and quantitatively been analyzed in [3] and the wave fronts
of thermoelastic waves have been visualized. Below, we present results of investigation of the three-dimensional fronts
of elastic and thermal waves propagating, in a cubically anisotropic medium, from a lumped source with allowance for
the interrelation between the thermal and mechanical fields.

Coordinates of Wave-Front Points. Following [3], we represent a resolving system of differential equations
for thermoelastic anisotropic materials of a cubic symmetry system in the form
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We specify the initial conditions to system (1) on the surface z(x1, x2, x3, t) = 0 and pass to new variables z, z1, z2,
and z3 according to the following scheme:

g = z (x1, x2, x3, t) ,   gi = zi (x1, x2, x3, t) ,   i = 1, 3
___

 .

We substitute expressions for the derivatives of first and second orders with respect to the variables x1, x2, x3, and t

expressed by the variables g1, g2, g3, and g into the system of equations (1) and set the determinant composed of the
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The coefficients of Eq. (2) have the form

k0 = − n∗ ,   k1 = (1 + n∗ (1 + 2b + ε)) δ1 , (3)
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The characteristic equation (2) yields the existence of a stationary discontinuity surface (p0 = 0), three modi-
fied elastic waves whose propagation is influenced by the temperature field, and a modified thermal wave whose
propagation is accompanied by elastic deformations. To find the coordinates of the medium’s points approached by the
energy of wave disturbance from a point source by the instant of time t we express p0 from Eq. (2)
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 δ
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  , (7)

where δ(n) = δn1 + δn2 − δn3 − δn4, δnj = 1 if n = j, and δnj = 0 if n ≠ j; the superscript points to the type of wave: n = 1
is the quasilongitudinal modified elastic wave, n = 2 and n = 3 are the quasitransverse modified elastic waves, and n = 4
is the thermal modified wave. The remaining coefficients in formulas (7) have the form
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Differentiating relations (7) with respect to the parameters pi, after simple transformations we obtain expres-
sions for the dimensionless coordinates (x1

(n), x2
(n), x3

(n)) of points of the three-dimensional fronts of thermoelastic waves
[4] propagating in a cubically anisotropic medium (i = 1, 3

___
 and n = 1, 4

___
):
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Here we introduce the following notation:
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the characteristic surface and αi is the angle between the normal to the characteristic surface and the coordinate axis
xi). Other quantities necessary for determining the coordinates (x1

(n), x2
(n), x3

(n)) will be obtained by replacing the coeffi-
cients z0, Λ, P, Q, p, q, and r in relations (8) by zl0 , Λ

l
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l
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Wave Fronts. We apply formulas (9) to construction of dimensionless three-dimensional fronts of modified
elastic and thermal waves propagating in a cubically anisotropic medium. Thus, Fig. 1 shows the position of wave sur-
faces in lead, which corresponds to the instant of time t = 1 sec. In the computations, we use the following physi-
comechanical constants: A1 = 46.6, A2 = 39.2, and A4 = 14.4 GPa, ρ = 11,342 kg ⁄ m3, αt = 28.35⋅10−6 1 ⁄ K, λ = 35
W ⁄ (m⋅K), T0 = 293 K, cε = 1458 kJ ⁄ (K⋅m3), and τ = 1⋅10−11 sec (a = 0.84, b = 0.31, ε = 0.609, and n = 1.72; the
numerical data have been taken from [5–7]). To find the absolute values of the coordinates of the wave-front points
we must multiply the values along the coordinate axes by a value numerically equal to c1t. We note that analogous
three-dimensional and two-dimensional fronts of thermoelastic and elastic waves are observed in cubically anisotropic
materials: silver, gold, brass, nickel, and many other metals belonging to the cubic symmetry system and forming the
first group of cubically anisotropic materials [8].

For quantitative evaluation of the influence of the effect of interrelation between the mechanical and tempera-
ture fields on the propagation of elastic and thermal waves we consider the sections of wave surfaces by the planes
passing through the coordinate axis x3. A comparative analysis of the corresponding two-dimensional wave fronts for
ε ≠ 0 and ε = 0 for different cubically anisotropic materials shows that the most significant difference of the modified
waves from pure elastic and thermal waves is observed in the coordinate planes xi = 0, i = 1, 3

___
. The sections of the

fronts of the quasilongitudinal elastic and thermal waves propagating in lead, by the coordinate plane x1 = 0, with al-
lowance for the interrelation between the thermal and mechanical fields and without it, are presented in Fig. 2 (nu-
merical data required for calculation have been given above.)

Fig. 1. Three-dimensional fronts of thermoelastic waves propagating in lead:
1) quasilongitudinal modified elastic wave; 2 and 3) quasitransverse elastic
waves (the geometry of the fronts is determined by the coordinates x(2) ⁄ c1t
and xi

(3) ⁄ c1t respectively); 4) modified thermal wave.
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From Fig. 2, it is clear that allowance for the interrelation between the temperature and deformation fields
leads to an increase in the velocity of propagation of the quasilongitudinal elastic wave and to a decrease in the ve-
locity of the thermal wave. The greatest change in the velocity is observed near the coordinate axes; in particular, for
lead, the increase in the velocity of the quasilongitudinal modified elastic wave amounts to C7% compared to the ve-
locity of the corresponding pure elastic wave, whereas the decrease in the velocity is nearly 6% compared to the pure
thermal wave. The influence of the temperature field on the propagation of the quasitransverse elastic waves in cubi-
cally anisotropic materials has not been found in any of the planes (coordinate or noncoordinate).

Influence of the Relaxation Time on the Wave Front. The value of the relaxation time of wave distur-
bances for most cubically anisotropic media has neither been determined nor been determined for cases where the ma-
terial was at low temperatures [3]. Therefore, results of investigation of the influence of the relaxation time τ on the
propagation of elastic waves is of practical and theoretical interest, since these results can be used to identify τ values
for different cubically anisotropic media. Figure 3 gives the sections of the three-dimensional fronts of the quasilongi-
tudinal modified elastic wave and the modified thermal wave propagating in lead by the coordinate plane x1 = 0; the
sections have been constructed for a characteristic number of vibrations n∗ of 1.5, 1.0, and 0.5, which corresponds to
τ values of 8.77, 5.85, and 2.92 psec.

From Fig. 3, it is clear that the relaxation time of thermal disturbances exerts a significant influence on the
propagation of elastic-wave fronts; the radial velocities of propagation of two modified waves grow with decrease in τ.
In particular, as the n∗ values decrease from 1.5 to 0.5, the radial velocity of the quasilongitudinal modified elastic

Fig. 2. Two-dimensional fronts of waves propagating in the coordinate plane
x1 = 0 of a cubically anisotropic material (the solid and dashed curves have
been constructed with allowance for the influence of the temperature field and
without it respectively): 1) quasilongitudinal modified elastic wave; 2) modi-
fied thermal wave.

Fig. 3. Two-dimensional fronts of the quasilongitudinal modified elastic (a)
and modified thermal waves (b) propagating in the plane x1 = 0 of a cubically
anisotropic material: 1) n∗ = 1.5, 2) 1, and 3) 0.5.
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wave grows by nearly 30%, whereas the radial velocity of the modified thermal wave increases by 20%. In the case
where τ → 0 the radial velocities of propagation of the modified elastic and thermal waves tend to infinity.

Conclusions. The results obtained enable one to visualize wave motions occurring in thermoelastic cubically
anisotropic media due to the action of a nonstationary point source. Three-dimensional wave fronts and their sections
can be used in the mechanics of rigid body and physical acoustics in conducting natural experiments on determination
of physicomechanical constants and correct interpretation of experimental data.

NOTATION

A1, A2, and A4, elastic constants, Pa; a = A2
 ⁄ A4; b = A4

 ⁄ A1; c1 = √A1
 ⁄ ρ , m ⁄ sec; cε, specific heat at constant

deformation, J ⁄ (K⋅m3); ni = cos αi, direction cosines of the normal slope to the characteristic surface; n∗ = τω∗, charac-
teristic number of vibrations; pi = ∂z ⁄ ∂xi; p0 = ∂z ⁄ ∂t; qi, components of the vector of surface heat-flux density, W ⁄ m2;
T, change in the absolute temperature, K; T0, initial temperature, K; t, time, sec; ui, components of the displacement
vector; m; αi, angle between the normal to the characteristic surface and the coordinate axis xi; αt, coefficient of linear
thermal expansion, 1 ⁄ K; β = (A1 + 2A2)αt; ∆, Laplace operator; δ1 = p1

2 + p2
2 + p3

2; δ2 = p1
2p2

2 + p3
2p2

2 + p1
2p3

2; δ3 = p1
2p2

2p3
2;

δ
l

1 = n1
2 + n2

2 + n3
2, δ
l

2 = n1
2n2

2 + n3
2n2

2 + n1
2n3

2, δ
l

3 = n1
2n2

2n3
2; ε = T0β

2 ⁄ (A1cε), dimensionless connectivity coefficient; λ,
thermal conductivity, W ⁄ (m⋅K); ρ, density, kg ⁄ m3; τ, relaxation time of thermal disturbances, sec; ω∗ = cεA1

 ⁄ (λρ), char-
acteristic quantity having the dimensions of frequency, 1 ⁄ sec. Subscript: t, thermal.
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